User Tools

Site Tools


formalized_languages

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
formalized_languages [2018/10/28 01:20]
andries
formalized_languages [2018/11/12 16:23] (current)
andries [3. Categories of kinds of relations]
Line 1: Line 1:
 ====== Formalization of natural languages ====== ====== Formalization of natural languages ======
  
-The Gellish family of Formalized Languages use the vocabulary of natural languages, whereas its expressions are based on semantics (meaning) and a syntax (expression structure) that is universal and independent of any particular language. As a result Gellish expressions are close to natural languages. ​This is realized by building on two observations:​ 1) The recognition that concepts are basically language independent things, although they are denoted in different languages by different terms and 2) By the discovery that it is possible to express ideas in a language ​natural independent way as collections of basically binary relations that are arranged in a network of relations. ​ \\ +The Gellish family of Formalized Languages use the vocabulary of natural languages, whereas its expressions are based on semantics (meaning) and a syntax (expression structure) that is universal and independent of any particular language. As a result Gellish expressions are close to natural languages. ​Therefore, they are also called Controlled Natural Languages (CNLs). The formalization ​is realized by building on two observations:​ 1) The recognition that concepts ​and the meanings of expressions ​are basically language independent things, although they are denoted in different languages by different terms and phrases ​and 2) By the discovery that it is possible to express ideas in a natural ​language ​independent way as collections of basically binary relations that are arranged in a network of relations. ​ \\ 
-The languages are called //formal// languages, because they are formally defined, so that computers can unambiguously interpret the meaning from the expressions. Computers cannot do that with natural languages ​and neither they can do that with databases without precise knowledge about the dedicated data models of those databases. Information that is expressed in a Gellish formal language is computer interpretable and application system independent. It can be generated when exporting data from systems for data exchanged between systems and parties in [[:​gellish_messages|Gellish ​messages]] and can be imported, interpreted and stored in [[:​gellish_databases|database systems]] and files. Queries can be expressed in Gellish formal languages as well. The language has a native standard Gellish Expression format, although it can also be stored in other formats. +The languages ​of the Gellish family ​are called //formal// languages, because they are formally defined, so that computers can unambiguously interpret the meaning from the expressions. Computers cannot do that with natural languagesneither they can do that with databases without precise knowledge about the dedicated data models of those databases. Information that is expressed in a Gellish formal language is computer interpretable and application system independent. It can be generated when exporting data from systems for data exchanged between systems and parties in [[:​gellish_messages|messages ​in Gellish]] and can be imported, interpreted and stored in [[:​gellish_databases|database systems]] and files. Queries can be expressed in Gellish formal languages as well. The language has a native standard Gellish Expression format ​(syntax), although it can also be stored in other formats. 
-The expressions can be unambiguously interpreted when they conform to the Gellish universal basic semantic patterns. To enable natural language independent interpretations,​ each concept is represented in the Gellish family by a natural language independent unique identifier (UID) and each expression is part of a pattern that complies with the basic semantic patterns. Thus the languages of the Gellish family are based a universal basic semantic structure ​and a generic syntax, as is described in this wiki and described in more detail in the book '​Semantic Information Modeling Methodology'​. \\+The expressions can be unambiguously interpreted when they conform to the Gellish universal basic semantic patterns. To enable natural language independent interpretations,​ each concept is represented in the Gellish family by a natural language independent unique identifier (UID) and each expression is part of a pattern that complies with the basic semantic patterns ​and uses concepts that are selected from or added to the Gellish Dictionary. Thus the languages of the Gellish family are based a universal basic semantic structurea generic syntax ​and a standardized vocabulary, as is described in this wiki and described in more detail in the book '​Semantic Information Modeling Methodology'​. \\
  
 The Gellish languages are intended for facilitating data integration and the export and import of data exchange messages from and to database systems. Therefore Gellish enabled software is not intended to become natural language interpreters,​ but only be interpreters of formalized languages in tabular form. This differs from conventional data definitions for databases and for data exchange and data interpretation. Conventionally information analysts, data modelers and programmers use 'data models'​ to define the structure of data and the meaning of '​instances'​. Data models are usually not called '​languages'​ and input or output is usually not called '​expressions'​. However, conventional data models define expressions structures and terminology,​ which together in fact define some form of dedicated languages. But for example database tables or data exchange files cannot easily be read as natural language expressions. The formal languages of the Gellish family are a step further towards natural languages. In a Gellish Expression table, the information is expressed as collections of expressions,​ each with a structure that is in essence a binary relation. The core elements of each line in such a table can be read as a (nearly) normal natural language expression. The definition of the Gellish family of languages can be considered equivalent to a very large and flexible data model (actually it is a further development of the generic data model of the ISO 15926-2 standard). The formalization however implies that Gellish expressions do not have the free form that natural languages have.\\ The Gellish languages are intended for facilitating data integration and the export and import of data exchange messages from and to database systems. Therefore Gellish enabled software is not intended to become natural language interpreters,​ but only be interpreters of formalized languages in tabular form. This differs from conventional data definitions for databases and for data exchange and data interpretation. Conventionally information analysts, data modelers and programmers use 'data models'​ to define the structure of data and the meaning of '​instances'​. Data models are usually not called '​languages'​ and input or output is usually not called '​expressions'​. However, conventional data models define expressions structures and terminology,​ which together in fact define some form of dedicated languages. But for example database tables or data exchange files cannot easily be read as natural language expressions. The formal languages of the Gellish family are a step further towards natural languages. In a Gellish Expression table, the information is expressed as collections of expressions,​ each with a structure that is in essence a binary relation. The core elements of each line in such a table can be read as a (nearly) normal natural language expression. The definition of the Gellish family of languages can be considered equivalent to a very large and flexible data model (actually it is a further development of the generic data model of the ISO 15926-2 standard). The formalization however implies that Gellish expressions do not have the free form that natural languages have.\\
Line 30: Line 30:
 ===== 3. Categories of kinds of relations ===== ===== 3. Categories of kinds of relations =====
  
-The expression power of formal languages is largely determined by the number and variety of kinds of relations (also called relation types) that are available in the language definition. The Gellish formalized language definition includes over 1000 standard kinds of relations. They are defined in the upper ontology section of the Taxonomic Dictionary-Ontology. Their textual definitions and subtype-supertype hierarchy (taxonomy) is documented a computer readable file that itself is written in Gellish. The hierarchy is also available in printed form in the book [[http://​www.lulu.com/​shop/​andries-van-renssen/​taxonomic-dictionary-of-relations/​paperback/​product-22534783.html|Taxonomic Dictionary of Relations]] and in its Dutch equivalent [[http://​www.lulu.com/​shop/​andries-van-renssen/​taxonomisch-woordenboek-van-relaties/​paperback/​product-22534768.html|Taxonomisch Woordenboek van Relaties]]. The electronic version also includes ​definitions of the allowed roles and the allowed role players for the kinds of relations as well as a taxonomy of roles and of role players. Together that defines what are correct formal expressions and how expressions should be interpreted. The electronic language definition can be licensed, and can then be directly imported in Gellish enabled application systems to enable generation and computer ​interpretation of formal language expressions.+The expression power of formal languages is largely determined by the number and variety of kinds of relations (also called relation types) that are available in the language definition. The Gellish formalized language definition includes over 1000 standard kinds of relations. They are defined in the upper ontology section of the Taxonomic Dictionary-Ontology. Their textual definitions and subtype-supertype hierarchy (taxonomy) is documented a computer readable file that itself is written in Gellish. The hierarchy is also available in printed form in the book [[http://​www.lulu.com/​shop/​andries-van-renssen/​taxonomic-dictionary-of-relations/​paperback/​product-22534783.html|Taxonomic Dictionary of Relations]] and in its Dutch equivalent [[http://​www.lulu.com/​shop/​andries-van-renssen/​taxonomisch-woordenboek-van-relaties/​paperback/​product-22534768.html|Taxonomisch Woordenboek van Relaties]]. The definitions ​of kinds of relations also include specifications ​of the allowed roles and the allowed role players for the kinds of relations as well as a taxonomy of roles and of role players. Together that defines what are correct formal expressions and how expressions should be interpreted. ​\\ 
 +The electronic language definition can be directly imported in Gellish enabled application systems to enable ​searching for kinds of relations and for supporting the generation and interpretation of formal language expressions.
  
 +For creating high quality Gellish expressions skills are required in **'​Semantic Modeling'​**,​ which primarily includes expressing information in the form of collections of binary relations conform a consistent methodology. It also includes using the proper kinds of relations for expressing particular meanings. \\
 +The search for the proper kinds of relations is supported by two mechanisms: 1) The fact that kinds of relations are denoted by phrases that apply logical naming conventions and 2) The fact that the kinds of relations are arranged in a taxonomy. A method for finding the required kinds of relations is described further in [[http://​wiki.gellish.net/​gellish_english_dictionary|the taxonomic dictionary section of this wiki]].
  
-Each kind of relation ​is identified by a unique identifier (Gellish UID). Furthermore,​ each relation type is denoted by at least one base phrase and by at least one inverse phrase. For example, a part-whole relation between two individual things is denoted in Formal English by the phrase <is a part of> and by the inverse phrases <has as part> and <is a whole for> ​and has UID 1260. This means that the same fact or idea can be expressed in either of the two ways. For example, the expression 'A <is a part of> B' has the same meaning as the expression 'B <has as part> A'. A relation ​type can also be denoted by alternative phrases, such as <is an assembly of>, or by phrases in other languages. Users may even define their own synonym phrases ​(provided that the UID remains the same) and they can indicate a '​language'​ and/or a '​language community'​ in which their phrase is preferred. For example: the Dutch (Nederlands) equivalent ​of the name of UID 1260 in the above example is: <is een deel van>.+=== 3.1 Phrases === 
 +Each kind of relation is denoted by at least one base phrase and by at least one inverse phrase. For example, a part-whole relation between two individual things is denoted in Formal English by the phrase <is a part of> and by the inverse phrases <has as part> and <is a whole for>. This means that the same statement ​or idea can be expressed in either of the two ways. For example, the expression 'A <is a part of> B' has the same meaning as the expression 'B <has as part> A'. A kind of relation can also be denoted by alternative phrases, such as <is an assembly of>, or by phrases in other languages. Users may even define their own synonym phrases and they can indicate a '​language'​ and/or a '​language community'​ in which their phrase is preferred. For example: the Dutch (Nederlands) equivalent ​base phrase for denoting ​the concept '​part-whole relation' ​in the above example is: <is een deel van>.
  
 +=== 3.2 Unique identifiers (UIDs) ===
 +Apart from the multiple phrases for denoting a kind of relation, each kind of relation is identified by a unique identifier (its Gellish UID). For example, the concept '​part-whole relation'​ has UID 1260. Thus all aliases, synonyms, abbreviations and translations of phrases that denote a particular kind of relation share the same UID. 
  
-The kinds of relations together form a taxonomy ​(a subtype-supertype hierarchy of kinds of relations) with the following branches:+=== 3.3 The taxonomy - the hierarchy of kinds of relations === 
 +The kinds of relations together form a taxonomy, being a subtype-supertype hierarchy of kinds of relations. This implies that all kinds of relations are subtypes of one concept, called **relation**. The first subtypes of '​relation'​ are the concepts //binary relation// and //higher order or variable order relation//. The binary relations have the following branches ​in the hierarchy:
  
  
-    - Kinds of relations between individual things +    - **Kinds of relations between individual things**. Expressions with such relations specify information about individual things. 
-    - Kinds of relations between an individual thing and a kind of thing +    - **Kinds of relations between an individual thing and a kind of thing**. Expressions with such relations mainly specify the nature or role of individual things, or they can be used for searching things of particular kinds. 
-    - Kinds of relations between kinds of things +    - **Kinds of relations between kinds of things**. Expressions with such relations specify knowledge about kinds, such as possibilities,​ definitions and requirements about kinds. 
-    - Kinds of relations between a single thing and a plurality +    - **Kinds of relations between a single thing and a collection**. Expressions with such relations specify for example which elements belong to which collections. 
-    - Kinds of relations between ​pluralities+    - **Kinds of relations between ​collections**. Expressions with such relations specify for example that a sub-collection is a partial collection of a larger collection.
  
  
-The kinds of relations include binary relations as well as higher ​order relations. Higher ​order relations include ​relations for modeling ​occurrences,​ such as processes, activities and events and relations for modeling ​correlations,​ such as for physical laws or geometric and mathematical formula.+Kinds of higher order relations include ​kinds that represent kinds of occurrences,​ such as processes, activities and events and kinds that represent ​correlations,​ such as for physical laws or geometric and mathematical formula. ​For specification of a higher order relation such as an occurrence, it is required to specify which and how objects are involved in the occurrences. This done by relating the occurrence to the involved objects by relations of kinds that are subtypes of binary //​involvement relation//. For example, a kind of activity is //​project//,​ and specifying an involvement of John as a manager of Project X is expressed as follows:​\\ 
 +  * John   //is manager of//   ​Project X
  
- +The definition of a [[http://​gellish.net/​index.php/​downloads/​file/​54-gellish-english.html|base collection of kinds of relations]] is free available in Gellish expression format in CSV via the download section of this website.
-For different application area's different kinds of relations are applicable.  +
-The definition of a [[http://​gellish.net/​index.php/​downloads/​file/​54-gellish-english.html|core collection of kinds of relations]] is free available in Gellish expression format in CSV via the download section of this website.+
  
 //Continue with:// [[http://​wiki.gellish.net/​outline_of_gellish|Outline of Gellish]] //Continue with:// [[http://​wiki.gellish.net/​outline_of_gellish|Outline of Gellish]]
formalized_languages.1540682403.txt.gz · Last modified: 2018/10/28 01:20 by andries